
Appendix
A. Related work—Continued
This section extends the discussion in Section 2 of the main
paper by including additional UAV-based datasets that fo-
cus on different downstream tasks such as action detection,
counting, geo-localization, 3D reconstruction, and bench-
marking; also, see [78].

(i) Human, vehicle, and drone trajectory track-
ing. PNNL 1 and 2 [3] are unannotated datasets consisting
of 1,000 and 1,500 frames, respectively, designed for human
tracking from a fixed perspective with long-term inter-object
occlusion. The highway-drone dataset [35] is a large-scale
dataset collected from 6 different locations on German high-
ways, crafted for the safety validation of automated vehicles.
The dataset consists of more than 110,500 vehicle annota-
tions, recorded over 147 hours, and offers each vehicle’s
trajectory, including type, size, and maneuvers. Among oth-
ers, UVSD [85] is a small-scale (5,874 images), multi-view,
aerial dataset for vehicle detection and segmentation. Dron-
eVehicle [67] (thermal infra-red+RGB) and BIRDSAI [16]
(thermal infra-red) are small-scale, low-resolution datasets
used for detection, tracking, and counting.

MVDTD [42] is a collection of datasets to estimate 3D
drone trajectories from multiple unsynchronized cameras.
UAVSwarm [71] detects and tracks UAVs. [41] proposes
drone-to-drone detection and tracking from a single drone-
camera. EyeTrackUAV2 [60] tracks drones from a ground
perspective, specifically, from a binocular viewpoint.

(ii) Action detection from aerial viewpoints. UCF-ARG
[55] is a multi-view, scripted dataset, designed for 10 differ-
ent human action detection, where the scenes are recorded
from 3 different views—a rooftop camera, a ground cam-
era, and an aerial camera. Okutama-Action [14] is an aerial
dataset consisting of 77,365 annotated frames, designed for
12 concurrent human action detection.

(iii) Counting and 3D reconstruction. CARPK [29] is
a single-view video dataset, captured from a moving drone,
contains nearly 90,000 cars from 4 different parking lots,
and is used for predicting the car-counts in a scene. CarFu-
sion [61] is a multi-view dataset consisting of 53,000 fully-
annotated frames, 100,000 car instances with 14 semantic
key points, captured from 18 moving cameras at multiple
locations, designed for 3D reconstruction of cars.

(iv) Geo-localization is a challenging problem, and over
the past years, some dedicated datasets were proposed to
devise efficient solutions to this problem. Danish airs and
grounds (DAG) dataset [69] is a large collection of ground-
level and aerial images covering about 50 kilometers in urban
and rural environments with the extreme viewing-angle dif-
ference between query and reference images is a dataset for
place recognition and visual localization. Similar to DAG,

[50] assembled a much smaller dataset with a drone and
GoogleMap images. For more details in this context, refer
to [45, 65].

(v) Other downstreaming tasks. SeaDronesSee [70] is
curated for single and multi-object tracking, specifically
people, floating in water. DroneSURF [32] is for person
identification, especially facial recognition, in an urban en-
vironment, while [77] works on object detection, tracking,
and counting. P-DESTRE [36] is a dataset designed to test
pedestrian detection, tracking, re-identification, and search
methods. VIRAT [58] is a video dataset from surveillance
cameras, designed for testing on real-world environments
and challenges.

(vi) Benchmarking and evaluation. The UAV Bench-
mark [28] and [43] present datasets that maximize their
breadth of usability, and provide extensive comparisons, in-
cluding camera motion estimation. Finally, in [78], Wu et
al. provides challenges and statistics of existing DL based
methods for UAV-based object detection and tracking.

B. Addendum to the dataset
In this section, we provide some extra insights on the structur-
ing and statistics of the MAVREC. Additionally, we discuss
about the CVAT annotation tool in Section B.1, and provide
an analysis of color distribution of different drone based
datasets and contrast them with MAVREC; see Section B.2.

B.1. CVAT annotation tool

CVAT is an industry-standard, open-source, cutting-edge,
interactive annotation tool that produces professional-level
image and video annotations for diverse computer vision
tasks [2]. CVAT is equipped with an in-built tracker that can
track an object consecutively for a few frames and results in
an easier and faster annotation. Annotating in CVAT is done
by annotating category by category. This can either be done
frame by frame or within an interval of frames relying on the
built-in tracker for the frames in between. Figure 10 presents
one such instance of annotation interface using CVAT.

B.2. Color distributions of different datasets—An
experimental analysis

The color content of different geographies on the earth is
quite diverse. Many recent studies show that the latitude
influences the solar elevation, and hence the population den-
sity [8, 37] of different parts of the world. These factors
have a direct effect on color-content of the scenes. In this
scope, we analyze the color content of sample video frames
from different datasets based on two key points: (i) color
distribution in the sample frames of different datasets based
on RGB color channels, and (ii) dominant color distributions
in the sample frames of the datasets.

14



Figure 7. The daily minimum and maximum of the solar zenith angle as a function of latitude and day of year for the year 2020. In the
Earth-Centered Earth-Fixed (ECEF) geocentric Cartesian coordinate system, let pϕs, λsq and pϕo, λoq be the latitudes and longitudes of
the subsolar point and the observer’s point, then the upward-pointing unit vectors at the two points, S and Voz , are S “ cosϕs cosλsi `

cosϕs sinλsj ` sinϕsk, and Voz “ cosϕo cosλoi ` cosϕo sinλoj ` sinϕok, where i, j and k are the basis vectors in the ECEF
coordinate system. Consequently, cosine of the solar zenith angle, θs, is the inner product between S and Voz . Source: [10].

Drone/UAV DJI Phantom 4, DJI mini 2
ISO Range 100-3200
Lens FOV 94˝ 20 mm, FOV 83˝ 20 mm

GoPro GoPro HERO4, HERO 6
ISO range 100-800

iphone 11, 13-Pro (when UAV not used)
FOV 120˝

Resolution (GoPro, Drone) 2.7K (2704x1520) 30fps
Filetype video .mp4 (.mov)
Filetype image .png

Table 5. Details of the recording devices.
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Figure 8. Car color popularity surveys conducted by American
paint manufacturer DuPont for the year 2012. Source: [9].

Color distribution of different datasets based on RGB
color channels. We show the color distributions of sample
frames from different datasets in Figure 13. For each dataset,
we randomly sample 1000 images. All images are resized
to 600 ˆ 337 and an average image is computed. Then, a
color histogram is computed for each color channel of the
average image, and the area under each curve representing
each color channel is calculated. Except for UAV123, the
area under the green channel for all other datasets is about
1.5-2ˆ lower than the MAVREC aerial view. However, the
blue color channel of MAVREC is the most dominant in

the aerial view. Additionally, the distribution of the blue
and green channels in the ground view of the MAVREC are
doubly-peaked, covering almost similar areas under them.

Dominant colors in MAVREC and other datasets. We use
the Python tool extract-colors-py, which groups
colors based on their visual similarities by using the CIE76
standard [1]. The tool, extract-colors-py uses two
hyperparameters: (i) the tolerance, ϵ, that determines how
two colors can be grouped (default ϵ “ 32), and (ii) color
limit, that is the upper limit of extracted colors in the output.
We set both the ϵ and the color limit to 12 and plot the
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Figure 9. Different sample scenes (with annotation) from our dataset; the first row is the aerial-view, second row presents the same scenes
from a ground camera. Similarly, the third row is the aerial-view, and the fourth row presents the same scenes from a ground camera. Some
scenes have a dense object annotations, while some scenes have very few object annotations. This high variance in object distribution across
different scenes in MAVREC is complementary to datasets like VisDrone [88] where object detection is relatively straightforward due to
their biased object distribution (dense), reflecting its demographic characteristics.

Table 6. Summary of annotations in both views of MAVREC.

View Train set Test set Validation set Total Total Annotations
annotations annotations annotations annotations annotated frames per frame

Aerial 655,608 120,517 42,927 819,052 11,024 74.23

Ground 226,461 42,440 14,651 283,552 11,024 25.72

Combined 882,069 162,957 57,578 1,102,604 22,048 50.01

grouped colors with their percentages. In Figure 14, we
analyze the most dominant colors in MAVREC in different
sample scenes (aerial and ground), while Figure 15 shows
the dominant colors in other datasets. Indeed, the dominance

of different spectra of blue, yellow, and green colors in
MAVREC in both views as shown in Figure 14 directly
supports our findings in Figure 13, and make MAVREC a
stand-alone video dataset compared to the other large-scale,
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Figure 10. A sample annotation using CVAT [2] interface. CVAT has an in-built tracker that tracks an object through multiple frames. The
inbuilt tracker speeds up the annotation part — once a particular frame is annotated, around 10 frames after that require minimal human
supervision — leveraging the tracker. This property makes CVAT an attractive annotation tool.

Figure 11. Total numbers of objects in each category in the aerial and ground view.

drone-based datasets such as VisDrone [88], UAV123 [54],
Campus [63].

C. Addendum to the baseline and evaluation

This section highlights the implementation details of our
baseline DNN models; see Table 7 and 8. In Section C.3,
we provide additional benchmarking results complementing
Section 4 in the main paper.

C.1. Implementation details

We train all object detectors for 39 epochs on 600 ˆ 337
scaled images, except DETR. DETR is a compute-heavy
model and requires more than 39 training epochs [18, 89] for
an optimal performance. For supervised benchmarking, we
train DETR with 100 object queries, and 10 classes (9 object
class, 1 background class) for 300 epochs. For D-DETR, we
used 900 queries and 20 classes. We adhere to the original
training methodologies of the respective methods in order
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Figure 12. (a) Total number of annotations in train, test, and validation sets of aerial and ground view; (b) number of objects based on their
sizes in aerial and ground view, aerial view has no large object annotation; (c) percentage of small, medium, and large objects in train, test,
and validation sets of aerial and ground view.

Figure 13. Color distribution of different datasets. In the top row, we show the color distribution of VisDrone [88] DET and MOT, the
Campus dataset [63], and the UAV123 dataset [21]. VisDrone represents south-east Asian geographies (collected in 14 cities across China)
[88]; the Campus dataset represents North American geographies, collected in Stanford University campus [63]; UAV123 represents the
Middle East, collected primarily in King Abdullah University of Science and Technology’s campus and its surroundings (Kingdom of Saudi
Arabia) [54]. In the bottom row, we show the ground and aerial view color distribution of MAVREC.

to train the object detectors specifically for the MAVREC
dataset.

Computing environment. For prototyping, we use a local
testbed with an AMD EPYC 7501 32-Core Processor with
2.0GHz speed, 16 GB memory, and 1 Nvidia Tesla V100
GPU with 32 GB on-board memory. For training all the
supervised baselines, we use two HPC nodes: (i) Node-1: 2x
Intel(R) Xeon(R) Gold 6230 CPU with 2.10 GHz processing
speed, 32 virtual cores, 192 GB memory, and 8 NVIDIA
V100 GPU each with 32 GB on-board memory; (ii) Node-2:
AMD EPYC 7F72 CPU with 3.2 GHz processing speed,
96 virtual cores, 2048 GB memory, and 8 NVIDIA A100
GPU each with 40 GB on-board memory. For training the
semi-supervised baselines, we use a server with AMD EPYC
7662 CPU, 1024GB memory, 8 RTX A5000 GPU.

C.2. Evaluation metric

In this section we give brief description of the metric used
in our experiments.

C.2.1 Average precision (AP)

Average precision (AP) is a standard metric for information
retrieval tasks and is used for object detection and instance
segmentation in computer vision. We pause here, and first
explain the precision and recall of a model’s performance in
general. For a given test of predictions (of a model) and the
corresponding ground-truth labels, the precision represents
the proportion of correct class labels among all predicted
positives. The recall represents the proportion of correct
positive predictions among all actual positives. For an user-
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(a) Scene 1 Aerial (b) Scene 1 Ground

(c) Scene 6 Aerial (d) Scene 6 Ground

(e) Scene 2 Aerial (f) Scene 2 Ground

(g) Scene 8 Aerial (h) Scene 8 Ground

Figure 14. Dominant colors in different sample frames of MAVREC containing both views.

(a) VisDrone DET (b) VisDrone DET

(c) VisDrone MOT (d) VisDrone MOT

(e) Campus (f) Campus

(g) UAV123 (h) UAV123

Figure 15. Most dominant colors in the sample frames of VisDrone DET and MOT [88], the Campus dataset [63], and the UAV123 dataset
[54].

defined threshold, t P p0, 1s, denote precision as P ptq and
recall as Rptq and are given as follows:

P ptq “
TP

TP + FP
and Rptq “

TP
TP + FN

,

where TP, FP , and FN denote true positive, false positive,
and false negative, respectively. The accuracy of the model’s
predictions is quantified by calculating the area under the

precision-recall (PR) curve.

In the context of object detection, next, we explain the
intersection over union (IoU) metric. IoU describes the
closeness of two bounding boxes (predicted and the ground
truth) and is given as the ratio of the area of intersection
between the predicted box (APredicted box) and ground truth
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Table 7. DNN models used for benchmarking. Note that 1M “ 106.

Type Model Task Dataset Parameters Optimizer Platform Metric

CNN YoloV7 [73] Detection MAVREC 36.5M SGD-M [57] PyTorch mAP

NAS Yolo-NAS (L) [11] Detection MAVREC 51.1M Adam [33] PyTorch mAP

DETR [18] Detection MAVREC 41M Adam [33] PyTorch mAP
Transformer D-DETR [89] Detection MAVREC and VisDrone 41M Adam [33] PyTorch mAP

OMNI-DETR [74] Detection MAVREC and VisDrone 41M Adam [33] PyTorch mAP

Table 8. Hyperparameters used for training each DNN model.

Model Backbone Learning Rate Batch Size Weight Decay Queries Attention Heads Epochs

YoloV7 [73] E-ELAN 1, 10´5, 10´1 32 5 ˆ 10´4 NA NA 39
Yolo-NAS (L) [11] QA-RepVGG 10´6, 5 ˆ 10´4 16 10´4 NA NA 39

DETR [18] ResNet50 [27] 10´4 2 10´4 100 16 300
D-DETR [89] ResNet50 2 ˆ 10´4 2 10´4 900 16 39
OMNI-DETR [74] ResNet50 10´4 2 10´4 900 16 39

box (AGround-truth box) to that of their union:

IoU “
APredicted box X AGround-truth box

APredicted box Y AGround-truth box
.

Naturally, IoU falls between 0 and 1, where 1 indicates a
complete overlap between the two boxes and hence, perfect
detection. While 0 indicates no overlap and hence, no de-
tection. A detection box is assigned TP, FP, and FN based
on the predicted label compared to the ground truth label
and the IoU between the two boxes. In multi-class classi-
fication, the model outputs the conditional probability that
the bounding box belongs to a certain object class. For a
probability confidence threshold, t P p0, 1s, in general, the
higher the number of detection, the lower the chances that
the missed ground-truth labels, resulting in a higher recall.
In contrast, the higher the confidence threshold, the more
confident the model is its predictions, and this results in a
higher precision. One can generate a PR curve based on
different threshold values t P p0, 1s. Finally, the average
precision (AP) is defined as the area under the PR curve:

AP “

ż 1

t“0

pptqdt.

In practice, numerical integration methods are used to ap-
proximately calculate this area.
Mean average precision (mAP) is the average AP across
all object classes and is defined as follows:

mAP :“ 1
|C|

ř

cPC APc,

where C is the set of all classes, |C| is its the cardinality, and
APc be the AP for a class c P C.

C.2.2 COCO mAP [44]

Our results reported with the COCO mAP which is a cu-
mulative sum of the average of multiple AP calculated at
different IoU-thresholds ranging from 0.5 to 0.95 with an
increment of 0.05. COCO mAP is the average over 10 IoU
levels on all classes.

C.3. Additional baseline results

In Table 10, we provide the supervised benchmark results on
the test of the aerial-view of MAVREC by using D-DETR
and YoloV7. Except a few minor discrepancies, overall
our observation in the main paper holds on MAVREC test
set results — We demonstrate that the inclusion of ground-
view samples substantially improves the object detection
performance.

C.3.1 Benchmarking with mix-up across views

We use the mix-up strategy to naturally augment and com-
bine the dual views of our data.
Why mix-up? Previously, we demonstrated that jointly
training the aerial-view samples with ground-view samples
substantially improves object detection from an aerial per-
spective; see Section 4.1. Nevertheless, a natural question
could be—Can a data-augmentation strategy be able to im-
prove the aerial-visual perception while aerial-view images
are augmented with corresponding ground-view images?
This motivates us to use mix-up [83] as an augmentation
strategy that can combine these two views.

The mix-up is a data augmentation technique that cre-
ates a convex combination of the input data pair and their
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Table 9. Supervised benchmark on aerial view of MAVREC (Validation Set). The first column indicates percentage of infused ground-view
samples with the aerial-view train set. The last column indicates the relative change in mAP compared to the baseline model that is trained
exclusively on aerial-view training set from MAVREC. The top row represents training exclusively on aerial-view samples.

Extra ground AP AP50 APS APM Relative(ÒÓ)
view samples change

0% 24.9 39.7 27.6 45.3 –
12.5% 34.4 63.8 31.6 64.3 162.6% Ò

25% 48.5 73.3 45.8 73.6 270.2% Ò

37% 44.4 71.0 41.9 71.9 238.9% Ò

50% 40.8 69.0 38.6 73.5 211.5% Ò

75% 44.2 66.6 40.8 79.5 237.4% Ò

100% 42.3 65.7 38.9 68.4 222.9% Ò

(a) D-DETR

Extra ground AP AP50 APS APM Relative(ÒÓ)
view samples change

0% 31.3 57.7 34.2 61.2 –
12.5% 30.9 57.7 33.7 59.4 1.3% Ó

25% 31.4 58.1 34.3 65.9 0.3% Ò

37% 35.8 68.4 34.7 66.8 14.4% Ò

50% 30.9 58.2 33.7 62.2 1.3% Ó

75% 45.3 79.1 43.0 79.6 44.9% Ò

100% 48.3 78.6 43.0 85.0 54.5% Ò

(b) YoloV7

Table 10. Supervised benchmark on aerial view of MAVREC (Test Set). The first column indicates percentage of infused ground-view
samples with the aerial-view train set. The last column indicates the relative change in mAP compared to the baseline model that is trained
exclusively on aerial-view training set from MAVREC.

Extra ground AP AP50 APS APM Relative(ÒÓ)
view samples change

12.5% 39.8 68.6 39.9 55.8 286.4% Ò

25% 44.8 71.5 42.9 72.4 335.0% Ò

37% 41.1 69.1 39.7 61.6 299.0% Ò

50% 36.0 65.8 33.0 54.1 249.5% Ò

75% 28.7 56.6 26.6 62.8 178.6% Ò

100% 39.9 65.8 32.5 70.6 287.4% Ò

(a) D-DETR

Extra ground AP AP50 APS APM Relative(ÒÓ)
view samples change

12.5% 29.5 55.6 28.8 64.6 5.6% Ó

25% 30.1 56.2 29.5 64.1 3.8% Ó

37% 33.1 63.3 30.4 70.0 5.8% Ò

50% 29.6 59.0 29.2 66.1 5.4% Ó

75% 40.5 74.6 36.7 74.7 29.4% Ò

100% 45.5 76.1 43.8 81.6 45.4% Ò

(b) YoloV7

labels and reduces the inductive bias [83]. For input pair,
pxA, xGq, and their corresponding labels, pyA, yGq, mix-
up creates new input, xm “ λxA ` p1 ´ λqxG, and label,
ym “ λyA ` p1 ´ λqyG, where λ P r0, 1s is the mixing pa-
rameter sampled from a βα,β-distribution with α “ β “ 1.
Thus, we apply mix-up to the 8605 pairs of aerial and ground-
view samples in the input space, while the testing perspective
remains the aerial view. Note that our approach to mix-up
differs from the original concept. We consistently apply
mix-up across the views for the same samples, as opposed to
performing mix-up among random samples within a batch.

D-DETR and YoloV7 training results with mix-up. Each
sample, S, consists of a pair of ground and aerial images,
pxG, xAq of the same scene. During training, we sample
the mixing parameter, λ „ β1,1 such that λ ą 0.5, resulting
in A as the dominant image. The best mAP corresponds to
λ P r0.75, 1s for D-DETR on MAVREC; see Table 11 for
ablation study for the optimal λ. For YoloV7, we use the
best λ from the mix-up D-DETR experiments. The results
in Table 11 suggest that D-DETR with mix-up parameter
λ ą 0.5 renders a better performance than vanilla D-DETR
trained only on aerial view images; see Table 2 in Section 4.
YoloV7 with mix-up parameter, λ P r0.75, 1s performs bet-
ter than the mix-up D-DETR. Overall, we can conclude that
mix-up D-DETR is better than the vanilla D-DETR model

trained only on aerial images; for YoloV7, the performance
is almost similar. In our experiments, mix-up technique
uses 17,210 images (8,605 pairs of ground and aerial view
images), while only a fraction of the 8,605 ground view im-
ages jointly trained with 8,605 aerial images can surpass its
performance as evident from Tables 9 and 10. In conclu-
sion, although our cross-view mix-up technique enhances
object detection performance, the superior strategy for im-
proving aerial detection performance is to train aerial-view
samples together with ground-view samples. Future work
will explore combining both the strategies (joint training and
mix-up) to improve the performance of downstream tasks in
aerial perspective.

D. Reproducibility, privacy, safety, and broader
impact

This paper introduces a large-scale, high-definition ground
and aerial-view video dataset, MAVREC, and performs ex-
tensive benchmarking on the data. The dataset is open-
source, fully curated, prepared, and we plan to release our
dataset via an academic website for research, academic, and
commercial use. The dataset is protected under the CC-
BY license of creative commons, which allows the users
to distribute, remix, adapt, and build upon the material in
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Table 11. Mix-up benchmarks after 39 epochs; the test perspective is the aerial view.

Model Mix-up parameter Validation Set Test Set

AP AP50 APS APM AP AP50 APS APM

r0.65, 1.0s 22.8 44.0 22.6 49.8 22.3 42.4 22.0 50.1
r0.75, 1.0s 33.4 56.0 31.2 56.1 29.1 49.6 27.0 47.7

D-DETR r0.85, 1.0s 28.2 50.1 25.5 55.9 23.5 44.9 22.0 44.9
0.9 25.8 41.6 28.3 46.4 23.3 41.3 25.0 42.3

r0.0, 1.0s 6.4 12.5 8.7 9.1 10.4 17.7 12.9 13.3

YoloV7 r0.75, 1.0s 30.3 58.6 29.8 60.7 28.5 55.3 27.9 57.9

Figure 16. Qualitative inference results of different DNN models on the test set of MAVREC.

any medium or format, as long as the creator is attributed.
The license allows MAVREC for commercial use. As the
authors of this manuscript and collectors of this dataset, we
reserve the right to distribute the data. Additionally, we pro-
vide the code, data, and instructions needed to reproduce the
main experimental baseline results, and the statistics perti-
nent to the dataset. We specify all the training details (e.g.,
data splits, hyperparameters, model-specific implementation

details, compute resources used, etc.).

We conduct the recording in public spaces in compliance
with the European Union’s drone regulations. In Scandina-
vian countries, video recording falls under surveillance if
the recording lasts continuously over 6 hours; our recorded
clips are only a few minutes long. Moreover, in crowded
intersections, to adhere to the drone-safety protocols, we
did not operate drones, instead, we used user-grade hand-
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held cameras from a high riser. As our recordings follow
these protocols, the university’s legal team confirmed that
we do not need additional permissions for our data collection
process or publication.

MAVREC is a traffic-centric dataset, with repetitive hu-
man activities limited to bicycling, stopping at red traffic
lights, and occasionally walking by. The position and dis-
tance of the ground and drone cameras do not allow any
explicit human recognition. There are many human subjects
present in the data, although there are no personal data that
can resemble shreds of evidence, reveal identification, or
show offensive content. By watching the video clips from
the MAVREC, the university’s legal experts have concluded
that the MAVREC does not have recognizable human sub-
jects and hence does not interfere with privacy. Therefore,
MAVREC is not subject to IRB (for North America) or
GDPR (for Europe) compliance as it has no privacy con-
cerns. We thoroughly discussed and validated this issue with
appropriate legal experts.

The dataset can be used by multiple domain experts.
Its application includes but is not only limited to surveil-
lance, autonomous driving [15, 52], robotics and instruc-
tional videos [78], environmental monitoring [59], heavy
industrial infrastructure inspection [13], developing livable
and safe communities [6, 30, 86], and a few to mention. Al-
though we do not find any foreseeable harms that the dataset
can pose to human society, it is always possible that some
individual or an organization can use this idea to devise a
technique that can appear harmful to society and can have
evil consequences. However, as authors, we are absolutely
against any detrimental usage of this dataset, regardless by an
individual or an organization, under profit or non-profitable
motivation, and pledge not to support any detrimental en-
deavors concerning our data or the idea therein.

D.1. Maintenance plan

The authors are responsible for maintenance and contin-
uous hosting of the dataset on the web. The project
lead will assign a research assistant for this purpose. For
any queries regarding corrections, annotations and learn-
ing algorithm the user can reach the maintenance team at
MAVRECdataset@gmail.com.

The authors will release the subsequent versions of the
dataset to address any reported errors and incorporate proper
corrections. The authors will also add annotations if any and
delete faulty annotations. The authors will determine the
necessity for these updates annually, and subsequently, the
latest version will be published on the website along with
all previous versions. Retaining access to earlier versions of
the dataset would allow the users for reference during their
evaluations and verify their results with the proper versions.
To differentiate between the versions, each version will be
assigned a unique number.

E. Motivation for research challenges on
MAVREC dataset

We offer the research community object detection challenges
to investigate through a synchronized multi-view dataset.
We also encourage the researchers to exploit how a multi-
view dataset (with partial annotation) can provide the basis
for developing techniques to improve performance in aerial
object detection. We highlight a few challenges below:
1. Utilizing the synchronized views and the temporal di-

mension not provides implicit information and offers
a resource-efficient way to enhance performance using
unsupervised and semi-supervised techniques. Resource-
heavy recording setup or annotations is not required to
accomplish this. An advancement in this direction would
bring a new era of research in an area increasingly driven
by large amounts of data.

2. We underline the need for future research in sampling
optimally aerial and ground views. This extends not only
to MAVREC but also to other datasets from different
domains and modalities. The insights gained from such
research could serve as a cornerstone for comprehend-
ing more optimal dataset constituents that contribute to
DNN’s perception. Further, the research community can
discover ways to identify samples that foster this under-
standing and those that hinder it.

3. Recovering objects from one view using the other has
multiple motivations: (i) training a model on one of the
views encourages us to develop techniques that can act as
a backup to sensor failure in another view. This can have
multiple practical use cases in surveillance and robotics.
(ii) Recovering objects from an easier learned view can
aid learning of a much more difficult view by information
transfer between these two views. Encouraging such algo-
rithms would further promote mapping between the views
without sophisticated systems such as global navigation
satellite/inertial navigation systems (GNSS/INS).
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